Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.125
Filtrar
2.
Cell Biol Toxicol ; 40(1): 19, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573528

RESUMO

RNA-binding proteins (RBPs) make vital impacts on tumor progression and are important potential targets for tumor treatment. Previous studies have shown that RBP regulator of differentiation 1 (ROD1), enriched in the nucleus, is abnormally expressed and functions as a splicing factor in tumors; however, the mechanism underlying its involvement in gastric cancer (GC) is unknown. In this study, ROD1 is found to stimulate GC cell proliferation and metastasis and is related to poor patient prognosis. In vitro experiments showed that ROD1 influences GC proliferation and metastasis through modulating the imbalance of the level of the oncogenic gene OIP5 and the tumor suppressor gene GPD1L. Further studies showed that the N6-methyladenosine (m6A) "reader" protein YTHDC1 can interact with ROD1 and regulate the balance of the expression of the downstream molecules OIP5/GPD1L by promoting the nuclear enrichment of ROD1. Therefore, YTHDC1 stimulates GC development and progression through modulating nuclear enrichment of the splicing factor ROD1.


Assuntos
Neoplasias Gástricas , Humanos , Diferenciação Celular , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA
3.
Plant Dis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549271

RESUMO

Cowpea or black-eyed pea [Vigna unguiculata (L.) Walp.] is a dual-purpose leguminous crop grown for food and fodder. In September 2022, cowpea plants exhibiting symptoms of a leaf spot and blight were observed in Renda Town located in Jingning County of Gansu Province, China, with the disease incidence in individual cowpea fields as high as 100%. Diseased leaves showed variable-sized, nearly circular brown blotches, large blotches with dark brown margins, and the adaxial surfaces of blotches had small black dots and whorls (Fig. 1). Multiple isolates with consistent colony characteristics were obtained from cowpea leaves with typical symptoms. The isolates were transferred to fresh potato dextrose agar medium (PDA) and then purified by transferring hyphal tips to PDA. Three isolates, JNJD-1, JNJD-2, and JNJD-3, were selected for subsequent identification and pathogenicity determination. After eight days at 25℃ on PDA, the colonies appeared irregular, aerial mycelium dense, cottony, atrovirens to olive brown, with white hyphae on the undulate margin (Fig. 2A and B). The pycnidia were globose to sub-globose, brown to dark brown, with 70-110 µm diameters. Single celled hyaline conidia were ellipsoidal to oblong with obtuse ends, and measured 6.6-9.3 × 2.8-4.1 µm (x̄ = 7.8 × 3.5 µm, n = 50) (Fig. 2C). Morphological characteristics are similar to the description of the genus Boeremia (Aveskamp et al, 2010). Primer pairs ITS1/ITS4, LR0R/LR5, fRPB2-5F2/fRPB2-7cR, and TUB2FD/TUB4RD were used to amplify portions of the ITS, LSU, RPB2, and TUB genes, respectively (Chen et al, 2015). The obtained sequences (Accession numbers: PP033662 to PP033664 for ITS, PP033667 to PP033669 for LSU, PP035531 to PP035533 for RPB2, and PP035534 to PP035536 for TUB) were 97% identical to that of a B. exigua strain CBS 431.74 (accession no. FJ427001, EU754183, GU371780, and FJ427112) (Table 1). The constructed maximum likelihood tree indicated close relationships between three isolates and B. exigua, which clustered together (Fig. 3). Cowpea plants (cultivar Junlintianxia) at the three-leaf stage were inoculated by spraying a spore suspension (1×106 conidia/ml) of JNJD-1, JNJD-2, and JNJD-3 until run off and incubated at greenhouse conditions (25°C and 12 h light). Inoculations with sterile water were used as a control and each treatment was repeated 3 times with five plants per replicate. Small brown spots appeared on the infected leaves at 2 dpi, followed by the appearance of large blotches, with dark brown at the margin and grayish-white in the center at 5 dpi (Fig. 4A). These lesions gradually increase and coalesce, causing leaf chlorosis and finally defoliation in serious cases. Disease incidence in inoculated cowpea plants treated with the isolates JNJD-1, JNJD-2, and JNJD-3 reached almost 100%. In contrast, control plants developed no symptoms (Fig. 4B). The pathogens were re-isolated from the inoculated leaves and identified as B. exigua using morphological and molecular analysis, whereas no fungus was isolated from control leaves. The experiment was repeated once under the same conditions, yielding similar results. B. exigua has a broad host range, infecting 19 families and 31 genera of plant species, and causing leaf spots, leaf blight, and tuber rot (Lan and Duan 2022). To our knowledge, this is the first report of the pathogen B. exigua causing spot blight on cowpeas. It has been reported that B. exigua infects leguminous crops from multiple genera, such as field pea, soybean, white clover, and Dumasia villosa (Liu et al, 2023). This study further enriches the host range of this pathogen and the pathogen species of cowpea leaf diseases.

4.
ACS Biomater Sci Eng ; 10(4): 2337-2350, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531043

RESUMO

The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.


Assuntos
MicroRNAs , Osteogênese , Animais , Osteogênese/genética , Gelatina/farmacologia , Gelatina/química , Tecidos Suporte/química , Regeneração Óssea/genética , MicroRNAs/genética , Polímeros , Impressão Tridimensional
5.
J Clin Transl Hepatol ; 12(3): 245-256, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38426192

RESUMO

Background and Aims: Acetaminophen (APAP)-induced liver injury (AILI) has an increasing incidence worldwide. However, the mechanisms contributing to such liver injury are largely unknown and no targeted therapy is currently available. The study aimed to investigate the effect of BTF3L4 overexpression on apoptosis and inflammation regulation in vitro and in vivo. Methods: We performed a proteomic analysis of the AILI model and found basic transcription factor 3 like 4 (BTF3L4) was the only outlier transcription factor overexpressed in the AILI model in mice. BTF3L4 overexpression increased the degree of liver injury in the AILI model. Results: BTF3L4 exerts its pathogenic effect by inducing an inflammatory response and damaging mitochondrial function. Increased BTF3L4 expression increases the degree of apoptosis, reactive oxygen species generation, and oxidative stress, which induces cell death and liver injury. The damage of mitochondrial function by BTF3L4 triggers a cascade of events, including reactive oxygen species accumulation and oxidative stress. According to the available AILI data, BTF3L4 expression is positively associated with inflammation and may be a potential biomarker of AILI. Conclusions: Our results suggest that BTF3L4 is a pathogenic factor in AILI and may be a potential diagnostic maker for AILI.

6.
Front Oncol ; 14: 1327691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444686

RESUMO

Background: Baseline serological biomarkers have the potential to predict the benefits of adjuvant chemotherapy in patients with gastric cancer. However, the fluctuating nature of postoperative recurrence risk makes precise treatment challenging. We aimed to develop a risk score in real-time predicting outcomes for postoperative GC patients using blood chemistry tests. Materials and methods: This was a retrospective, multicentre, longitudinal cohort study from three cancer centres in China, with a total of 2737 GC patients in the pTNM stage Ib to III. Among them, 1651 patients with at least two serological records were assigned to the training cohort. Model validation was carried out using separate testing data with area under curve (AUC). The least absolute shrinkage and selection operator (LASSO) and random forest-recursive feature elimination (RF-RFE) algorithm were used to select the parameters. Results: The Cox regression model derived six risk factors to construct a composite score (low-risk: 0-2 score; high risk: 3-6 score), including CEA, CA125, CA199, haemoglobin, albumin, and neutrophil to lymphocyte ratio. The risk score accurately predicted mortality in 1000-time bootstrap (AUROCs:0.658; 95% CI: 0.645, 0.670), with the highest AUROC (0.767; 95% CI: 0.743, 0.791) after 1 year since the gastrectomy. In validation dataset, the risk score had an AUROC of 0.586 (95% CI 0.544, 0.628). Furthermore, patients with high risk at 1 month derived significant clinical benefits from adjuvant chemotherapy (P for interaction <0.0001). Compared with the low-low-low risk group, the low-low-high risk group of the long-term state chain (risk state at baseline, 6 months, 1 year) had the worse OS (HR, 6.91; 95%CI: 4.27, 11.19) and DFS (HR, 7.27; 95%CI: 4.55, 11.63). Conclusion: The dynamic risk score is an accurate and user-friendly serological risk assessment tool for predicting outcomes and assisting clinical decisions after gastrectomy.

7.
Immunology ; 171(4): 595-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205925

RESUMO

Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.


Assuntos
Asma , Microbioma Gastrointestinal , Mycobacteriaceae , Mycobacterium , Camundongos , Animais , Inflamação , Camundongos Endogâmicos BALB C , Ovalbumina , Modelos Animais de Doenças , Pulmão , Líquido da Lavagem Broncoalveolar
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166917, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820821

RESUMO

The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.


Assuntos
Vesículas Extracelulares , Macrófagos Associados a Tumor , Imunoterapia , Macrófagos , Comunicação Celular
9.
Phytomedicine ; 123: 155188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056146

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE: This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS: IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS: IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION: This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Quercetina/análogos & derivados , Camundongos , Animais , Ratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Lipídeos
10.
Int Immunopharmacol ; 126: 111241, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984253

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory syndrome that can lead to multiple organ dysfunction and life-threatening complications. Sepsis-induced myocardial dysfunction (SIMD) has been confirmed to be present in half of patients with septic shock, increasing their mortality rate to 70-90%. The pathogenesis of SIMD is complex, and no specific clinical treatment has yet been developed. Caloric restriction mimetics (CRM), compounds that simulate the biochemical and functional properties of CR, can improve cardiovascular injury by activating autophagy. This study investigated the effect of a new type of CRM which can induce hypoxia, the SGLT nonspecific inhibitor phlorizin on SIMD. MATERIALS AND METHODS: In vivo, phlorizin was administered at 1 mg/kg/day intragastrically for 28 days. In vitro, AC16 was treated with 120 µM phlorizin for 48 h. Echocardiography was used to assess cardiac function. Myocardial injury markers were detected in serum and cell supernatant. Western blotting was employed to detect changed proteins associated with apoptosis and autophagy. Immunofluorescence, immunohistochemistry, co-immunoprecipitation, molecular docking, and other methods were also used to illustrate cellular changes. RESULTS: In vivo, phlorizin significantly improved the survival rate and cardiac function after sepsis injury, reduced markers of myocardial injury, inhibited myocardial apoptosis and oxidative stress, and promoted autophagy. In vitro, phlorizin alleviated the apoptosis of AC16, as well as inhibited oxidative stress and apoptotic enzyme activity. Phlorizin acts on autophagy at multiple sites through low energy (activation of AMPK) and hypoxia (release of Beclin-1 by Hif-1α/Bnip3 axis), promoting the formation and degradation of autophagosomes. CONCLUSION: We indicated for the first time that phlorizin could inhibit glucose uptake via GLUT-1 and conforms to the metabolic characteristics of CRM, it can induce the hypoxic transcriptional paradigm. In addition, it inhibits apoptosis and improves SIMD by promoting autophagy generation and unobstructing autophagy flux. Moreover, it affects autophagy by releasing Beclin-1 through the Hif-1α/Bnip3 axis.


Assuntos
Autofagia , Miócitos Cardíacos , Florizina , Sepse , Florizina/farmacologia , Hipóxia , Miócitos Cardíacos/efeitos dos fármacos , Sepse/complicações , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Restrição Calórica , Coração/efeitos dos fármacos , Cardiotônicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Apoptose
11.
Environ Toxicol ; 39(4): 2218-2228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38130072

RESUMO

Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. Eupatilin is a key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai. Recent research reports have proved the inhibitory function of Eupatilin in many diseases. MicroRNAs (miRNAs) are 21-23 nucleotide-long, single-stranded, noncoding RNA molecules generated endogenously, and many studies have indicated that miRNAs are involved in the development of osteoporosis. This study explored the role and potential mechanism of Eupatilin underlying PMOP. First, rats were given intragastric administration of Eupatilin every day and subcutaneous injections of oligonucleotides or plasmids that interfered with miR-211-5p or janus kinase 2 (JAK2) once a week. After 4 weeks, the PMOP rat model was established. Then, serum alkaline phosphatase, calcium, and phosphorus levels, as well as femur bone mineral density and biomechanical parameters, were detected. Hematoxylin-eosin staining and Masson staining were applied for detecting the pathological condition of femur, and immunohistochemical staining was for detecting osteocalcin. MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2; and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was analyzed. The targeting relation between miR-211-5p and JAK2 was also verified. The experimental results revealed that Eupatilin improved the pathological conditions of PMOP rats by promoting the proliferation and mineralization of osteoblasts. MiR-211-5p was down-regulated and JAK2/STAT3 was upregulated in PMOP rats. Upregulation of miR-211-5p further improved the pathological conditions of PMOP rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. JAK2 offset the effects of elevated miR-211-5p on PMOP rats. Overall, Eupatilin attenuates PMOP through elevating miR-211-5p and repressing JAK2/STAT3 pathway, which suggests the utility of Eupatilin as a potential drug for POMP treatment.


Assuntos
Flavonoides , MicroRNAs , Osteoporose Pós-Menopausa , Humanos , Feminino , Ratos , Animais , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Acta Pharmaceutica Sinica ; (12): 35-42, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005437

RESUMO

Sesquiterpenoids are widely found in nature, while nitrobenzoyl sesquiterpenoids are relatively rare. Twelve natural nitrobenzoyl sesquiterpenoids were all derived from marine Aspergillus fungi, which are typical natural products with marine characteristics. These natural products exhibit good antitumor, antiviral, and inhibition of osteoclast differentiation activity, especially in the treatment of osteoclast-related diseases, showing good medicinal development value. This article reviews the natural product sources, chemical structure, chemical synthesis, biosynthesis, bioactivity, and pharmacological mechanisms of nitrobenzoyl sesquiterpenoids and predicts and discusses their absorption, distribution, metabolism, excretion, toxicity (ADME/T), and drug-likeness, providing a comprehensive understanding of the natural products of nitrobenzoyl sesquiterpenoids from marine sources and their potential for pharmaceutical development.

13.
Biomicrofluidics ; 17(6): 061302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058463

RESUMO

Particle image velocimetry and particle tracking velocimetry have played pivotal roles in flow and particle characterization, owing to their non-invasive and accurate data collection methods. However, their broader application in the biomicrofluidics field is constrained by challenges, such as intensive calibration, high post-processing costs, and optical compatibility issues, especially in settings where space is a bottleneck. This article describes recent advancements in non-iterative ray tracing that promise more streamlined post-capture calibration and highlights examples of applications and areas that merit further technological investigation. The development and adoption of these techniques may pave the way for new innovations.

14.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067633

RESUMO

The development of photocatalysts for organic degradation is a hot research topic. In this study, CdZnS was selected as the carrier, and ZIF-8 was combined with it to explore the photocatalytic performance of the composite. In addition, the compound material, CdZnS@ZIF-8, was used as a photocatalyst for the decomposition of methylene blue dye, and the performance of pure CdZnS and pure ZIF-8 was compared. The photocatalytic efficiency of CdZnS@ZIF-8 was significantly higher than that of the other two. In the experimental reaction, the amount of catalyst was 0.04 g, the pH value was 7, the initial concentration of methylene blue aqueous solution was 20 mg/L, and the degradation of methylene blue in 50 mL aqueous solution could reach 99.5% under visible light irradiation for 90 min, showing excellent photocatalytic efficiency in the visible light range. It demonstrated excellent photocatalytic function in the visible light region, and the electron transfer phenomenon at the interface occurred in the het-junction and the separation of the photo-generating electron-hole as an electron acceptor of ZIF-8 further promoted the photocatalytic effect.

15.
Lab Chip ; 24(1): 20-33, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37937351

RESUMO

The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (µep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring µep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured µep of polystyrene particles (0.53, 0.84, 1, and 2 µm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 µm or image analysis for particles ≥2 µm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the µep and size of a broad range of individual particles.

16.
Lab Chip ; 24(1): 148, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38018503

RESUMO

Correction for 'Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE)' by M. Hannah Choi et al., Lab Chip, 2023, https://doi.org/10.1039/D3LC00413A.

17.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873146

RESUMO

MicroRNA (miR)-200c suppresses the initiation and progression of oral squamous cell carcinoma (OSCC), the most prevalent head and neck cancer with high recurrence, metastasis, and mortality rates. However, miR-200c -based gene therapy to inhibit OSCC growth and metastasis has yet to be reported. To develop an miR-based gene therapy to improve the outcomes of OSCC treatment, this study investigates the feasibility of plasmid DNA encoding miR-200c delivered via non-viral CaCO 3 -based nanoparticles to inhibit OSCC tumor growth. CaCO 3 -based nanoparticles with various ratios of CaCO 3 and protamine sulfate (PS) were utilized to transfect pDNA encoding miR-200c into OSCC cells and the efficiency of these nanoparticles was evaluated. The proliferation, migration, and associated oncogene production, as well as in vivo tumor growth for OSCC cells overexpressing miR-200c were also quantified. It was observed that, while CaCO 3 -based nanoparticles improve transfection efficiencies of pDNA miR-200c , the ratio of CaCO 3 to PS significantly influences the transfection efficiency. Overexpression of miR-200c significantly reduced proliferation, migration, and oncogene expression of OSCC cells, as well as the tumor size of cell line-derived xenografts (CDX) in mice. In addition, a local administration of pDNA miR-200c using CaCO 3 delivery significantly enhanced miR-200c transfection and suppressed tumor growth of CDX in mice. These results strongly indicate that the nanocomplexes of CaCO 3 /pDNA miR-200c may potentially be used to reduce oral cancer recurrence and metastasis and improve clinical outcomes in OSCC treatment. (227 words).

18.
Front Immunol ; 14: 1244534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781359

RESUMO

Background: Posttransplant lymphoproliferative disorders (PTLDs) are uncommon but serious complications in patients following solid organ transplantation. Primary Epstein-Barr virus (EBV) infection is a risk factor for the development of PTLD, especially early-onset PTLD, in EBV-negative recipients. To date, however, there are no specific guidelines on the threshold of EBV-DNA load for therapeutic intervention, the source for measurement (e.g., blood, bronchoalveolar fluid), or the use of antiviral agents as prophylaxis for early PTLD prevention in EBV-mismatched patients. Methods: The present study describes a 56-year-old male lung transplant recipient diagnosed with EBV-associated PTLD. Results: This patient had a history of invasive fungal disease and Mucor and Aspergillus fumigatus infections in the early post-transplant period, necessitating antifungal therapy throughout the course of the disease. The patient was EBV-positive 15 days after transplantation, with lung CT showing multiple bilateral nodules of varying sizes beginning 98 days after transplantation. A lung biopsy showed PTLD, and next-generation sequencing (NGS) revealed EBV. This patient, however, did not receive any antiviral therapy for early PTLD prevention or any PTLD-related treatment. He died 204 days after lung transplantation. Conclusion: The present study describes a lung transplant recipient who developed EBV-associated PTLD, a non-negligible disease, after solid organ transplantation. Monitoring EBV-DNA load is important, as a sudden increase may be a sensitive indicator of PTLD. An earlier diagnosis may increase the likelihood of successful treatment.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Pulmão , Transtornos Linfoproliferativos , Masculino , Humanos , Pessoa de Meia-Idade , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/genética , Transplantados , Transplante de Pulmão/efeitos adversos , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/tratamento farmacológico , Transtornos Linfoproliferativos/etiologia , Pulmão/diagnóstico por imagem , DNA/uso terapêutico
19.
Physiol Plant ; 175(5): e14020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882312

RESUMO

Germination of aged seeds may be associated with specific metabolic changes. The objective of this study was to examine physiological and metabolic alterations before and after germination of control and aged oat (Avena sativa) seeds. The activity of antioxidant enzymes and the level of storage compounds were measured in the embryo and endosperm at 0, 4, 16, and 32 h of imbibition for control seeds and 0, 4, 16, 32, and 60 h of imbibition for medium vigor seeds after artificially accelerated aging; metabolomic changes were determined in embryos at 16 and 32 h of seed imbibition. In aged oat seeds, superoxide dismutase activity and catalase activity increased in the late imbibition stage. The content of soluble sugars decreased significantly in the later stages of imbibition, while the content of proteins increased in 32 h of seed imbibition eventually producing mannitol and proline. The mobilization of fat in deteriorated seeds was mainly through the sphingolipid metabolic pathway generated by cell growth-promoting dihydrosphingosine-1-phosphate. Ascorbic acid, avenanthramide and proline levels increased significantly at 60 h of imbibition, playing an important role in the germination of aged oat seeds.


Assuntos
Antioxidantes , Germinação , Antioxidantes/metabolismo , Germinação/fisiologia , Avena/metabolismo , Sementes/metabolismo , Prolina/metabolismo
20.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834339

RESUMO

The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Células-Tronco Pluripotentes , Proteínas de Arabidopsis/genética , Brotos de Planta/metabolismo , Arabidopsis/metabolismo , Meristema , Células-Tronco Pluripotentes/metabolismo , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...